Competitive PhD studentship available in the School of Mathematics and Physics

EPSRC Doctoral Training Partnership (DTP) Studentships

The University of Lincoln has received funding from the Engineering and Physical Sciences research Council to establish a Doctoral Training Partnership (DTP), which will provide skills training to foster the next generation of world-class research leadership in areas of strategic importance to both EPSRC and the University of Lincoln.

The training programme prioritises the following three thematic areas of robotics and artificial intelligence: smart energy; medical diagnosis and healthcare support systems; and bio-physics inspired robotics, in which the University has strong research groups. These research groups will provide DTP students with a rich research environment and a broad range of experienced and new researchers.

Each studentship will be associated with a specific project that will be designed to advance fundamental research in computer science or engineering within one of the thematic areas. Interdisciplinary links with other subject areas will also be expected.

The school of Mathematics and Physics is currently proposing a potential project on Bio-Physics Inspired Robotics (see below) competing with 7 other potential projects for the 2020-21 studentship application.

The studentship covers 3 and half years of tuition fees at UK/EU student rates, a tax-free stipend at EPSRC rates, and a generous research training support grant enabling international travel and participation in the leading conferences and symposia.

Studentship applications are now open for entry into the DTP programme, starting in September 2020.

Please note: Due to funder restrictions, we are unable to accept applications from non-UK/EU applicants. Additionally due to current circumstances interviews may take place online.

Closing date: Midnight, June 14 2020.


Collective Behaviour of Autonomous Organisms: From Bio-Particles to Robotics

Academic Contact: Dr Fabien Paillusson (, Senior Lecturer, School of Mathematics and Physics

Active Matter is an emerging interdisciplinary field in physics and applied mathematics which refers to systems comprising interacting agents which can drive their own motion (for instance birds, fish, insects, “smart” artificial micro-particles, or bio-mimicking robots). Active Matter systems are to be opposed to Inert Matter systems whose behaviours are entirely determined by the mechanical interactions between the agents. Consequently, in the past two decades Active Matter models have demonstrated complex collective behaviours such as the formation of active clusters, obstacle induced phase separation and organised flocking motions, which are usually not achievable in assemblies of inert agents.

These newly found “living structures” can in turn be implemented in real life with collections of bacteria, artificial micro-particles or bio-mimicking robots for industrial, medical, or military applications making use of their self-assembling properties and resilience to external influences.

Active Matter constitutes a class of promising systems in that simple sets of rules can lead to many rich phases of collective behaviours. There is ample opportunity to develop new classes of rules which can give rise to never-seen before phases and ultimately provide insights on how to reverse-engineer rules for targeted goals. This interdisciplinary project at the interface of physics, computer modelling and robotics will develop new theoretical and computational models for such systems and validate them on physical robotic swarms.

Specific Requirements for Candidates:

Interested applicants should carry, at a minimum, a 2.1 degree in either Physics, Mathematics, Engineering or other related discipline with good computational and communication skills. You must be motivated to learn new things and to work collaboratively as part of a team.

Please do not hesitate to contact Dr Fabien Paillusson if you have any question.

You can access the application form here.


One comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.